Time series analysis is one of the most common operations in Remote Sensing. It helps understanding and modeling of seasonal patterns as well as monitoring of land cover changes. Earth Engine is uniquely suited to allow extraction of dense time series over long periods of time.

In this post, I will go through different methods and approaches for time series extraction. While there are plenty of examples available that show how to extract a time series for a single location – there are unique challenges that come up when you need a time series for many locations spanning a large area. I will explain those challenges and present code samples to solve them.

The ultimate goal for this exercise is to extract NDVI time series from Sentinel-2 data over 1 year for 100 farm locations spanning an entire state in India.

Continue reading

Google Earth Engine (GEE) is a powerful cloud-based system for analysing massive amounts of remote sensing data. One area where Google Earth Engine shines is the ability to calculate time series of values extracted from a deep stack of imagery. While GEE is great at crunching numbers, it has limited cartographic capabilities. That’s where QGIS comes in. Using the Google Earth Engine Plugin for QGIS and Python, you can combine the computing power of GEE with the cartographic capabilities of QGIS. In this post, I will show how to write PyQGIS code to programmatically fetch time-series data, and render a map template to create an animated maps like below.

Continue reading